Session EAP: Engineering Applications

Learning Non-linear Ranking Functions for Web Search using Probabilistic Model Building GP

Hiroyuki Sato,
Danushka Bollegala,
Yoshihiko Hasegawa,
and Hitoshi Iba

Outline

- Introduction
- Learning to Rank
- Probabilistic Model Building GP
- The Proposed method: Rank-PMBGP
- Experiments and discussion
- Conclusion

Search engines

The most efficient way to search documents from Web

The anatomy of a search engine

Input: Query

$$q = \{CEC2013\}$$

Ranking system

How should we *rank* documents?

Repository of Documents

$$D = \{d_1, d_2, ..., d_M\}$$

Output: *Ranked* list of documents in relevance order

1.
$$d_i = \text{www.cec2013.org}$$

2.
$$d_k = cec2013.ca$$

•

N.
$$d_1 =$$
 www.exhibits.cec.sped.org

Outline

- Introduction
- Learning to Rank
- Probabilistic Model Building GP
- The Proposed method: Rank-PMBGP
- Experiments and discussion
- Conclusion

Problem Settings

 When Query-Document pairs are given, we want Ranking System which outputs proper ranked list of documents

Query-Document pairs Ranked list of documents d_{1j} Ranking q_1 q_2

How we evaluate rankings?

 Use dataset tagged by human (gotten from real users)

Ex. d_{1j} is relevant to d_{1k} is not relevant to

2. Use evaluate measures

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

A Query-Document pair

relevancy		
1.	d_{12}	
$2. \times$	d_{13}	
3.	d_{15}	
4.	d_{11}	
$5. \times$	d_{14}	

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

Ranked list of documents

relevancy

$$2.\times d_{13}$$

3.
$$d_{15}$$

4.()
$$d_{11}$$

$$5.\times$$
 d_{14}

$$P@1 = 1 / 1 = 1$$

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

relevancy
$$d_{12}$$
 d_{12} d_{13} d_{15} d_{15} d_{11} d_{14}

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

relevancy
$$d_{12}$$
2. \times d_{13}
3. \times d_{15}
4. \oplus d_{11}
5. \times d_{14}

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

relevancy 1.
$$\bigcirc$$
 d_{12} d_{13} d_{13} d_{15} d_{15} d_{11} d_{14} P@1 = 1 / 1 = 1 P@2 = 1 / 2 = 0.5 P@3 = 2 / 3 = 0.67 P@4 = 3 / 4 = 0.75 P@4 = 3 / 4 = 0.75

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

relevancy 1.
$$\bigcirc$$
 d_{12} d_{13} d_{13} d_{15} d_{11} d_{11} d_{12} d_{13} d_{15} d_{11} d_{14} d_{14} d_{15} d_{16} d_{17} d_{18} d_{19} $d_$

AP (Average Precision)

$$AP = \frac{\sum_{n=1}^{N} (P@n \times rel(n))}{\text{No. of relevant docs for this query}}.$$

$$AP = (P@1+P@2+P@3+P@4+P@5) / 5$$

= 0.70

MAP (Mean Average Precision)

- Popular evaluation method for ranking, but time consuming
- Employed as fitness function in the proposed method

Features that search engines must consider

- Relevancy between query and document: depends on <u>both query and document</u>
 - term frequency (tf)
 - inverse document frequency(idf)
 - tf-idf
 - BM25: normalized tf-idf by document length
- Importance of documents: depends <u>only on</u> document
 - Page rank
 - HITS

Can a combination of these features define more accurate relevancy and importance?

Ranking function & Learning to Rank

- Ranking function
 - Combination of relevancy and importance features
 - Returns higher real values for more relevant query and document pairs
- Linear ranking function was commonly used $F(query, document) = \sum \omega_i f_i$
 - Can be easily optimized
 - Fast for large queries
- Learning to Rank
 - To learn and optimize ranking function

Non-linear Ranking Function

- Generally
 - More degrees of freedom, possible to fit the actual ranking function better
- Experimental Results
 - Yahoo! Learning to Rank Challenge Overview [O. Chapelle et al. 2011]
 - "The results of the challenge clearly showed that nonlinear models such as trees and ensemble learning methods are powerful techniques."
 - Non-linear baseline, GBDT (Gradient Boosted Decision Tree)
 [J. Freedman 2002], beats many linear challengers

The attention to Non-linear learning to rank is ever increasing!

However, Non-linear search space is vast...

Outline

- Introduction
- Learning to Rank
- Probabilistic Model Building GP
- The Proposed method: Rank-PMBGP
- Experiments and discussion
- Conclusion

PMBGP (Probabilistic Model Building GP)

- Extension of EDAs (Estimation of Distribution Algorithms) to tree structures, functions or programs
- Estimate subtrees or other building blocks using Probabilistic models

In non-linear vast search space, it is considered efficient to estimate building blocks for searching good ranking functions

The Flow of Probabilistic Model Building GP (Using Bayesian network)

Generate M individuals from learnt Bayesian network

X M: population size

Bayesian network

- Probabilistic model to describe conditional dependencies
- ♦ Many applications
 - ♦ Disease detection
 - ♦ Machine trouble detection
 - - ♦ EDA and Probabilistic Model Building GP

Judea Pearl
The 2011 winner of Turing Award

4: Learning Bayesian network

Graph structure $\,G\,$

MAP (Maximum a posteriori) estimation

$$\hat{G} = \underset{G}{\operatorname{arg\,max}}(P(G \mid B_g))$$

$$= \underset{G}{\operatorname{arg\,max}}(P(B_g \mid G)P(G))$$

Greedy search for graph structure with maximize

$$P(B_g \mid G)P(G)$$

ex. BD score, BIC score

MAP (Maximum a posteriori) estimated Bayesian network

5: Sampling (generation of new individuals) PLS: Probabilistic Logic Sampling

※ M: population size

Outline

- Introduction
- Learning to Rank
- Probabilistic Model Building GP
- The Proposed method: Rank-PMBGP
- Experiments and discussion
- Conclusion

The proposed method: Rank-PMBGP Non-linear Learning to Rank using PMBGP

- Base: POLE (Program Optimization with Linkage Estimation) [Y. Hasegawa et al. 2007]
- Function nodes: {+, -, *}
- Terminal nodes:
 - Variable nodes: features

Create nonlinear elements

- Constant node: weights for features [0,1]
- Fitness: MAP

$$MAP = \frac{\sum_{q=1}^{Q} AP}{\text{No. of queries}}$$

FITNESS: IVIAP
$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

$$MAP = \frac{\sum_{q=1}^{Q} AP}{\text{No. of queries}}$$

$$AP = \frac{\sum_{n=1}^{N} (P@n \times rel(n))}{\text{No. of relevant docs for this query}}$$

Outline

- Introduction
- Learning to Rank
- Probabilistic Model Building GP
- The Proposed method: Rank-PMBGP
- Experiments and discussion
- Conclusion

Dataset

LETOR: Released by Microsoft Research Asia

✓ Such a large data that MAP calculation

- (fitness evaluation) is very time consuming
- √ 44 features

The Flow of experiments

Methods for comparison

- RankSVM [R. Herbrich et al. 1999]
 - Using Support Vector Machine to discriminate relevance or not
- RankBoost [Y. Freund et al. 2003]
 - An application of Adaboost to learning to rank
- SwarmRank [E. Diaz-Aviles et al. 2009]
 - Optimize linear ranking function by PSO (Particle Swarm Optimization)
- RankGP [J. Y. Yeh et al. 2007]
 - Optimize linear ranking function using GP
- RankDE [D. Bollegala et al. 2011]
 - This achieves best score among evolutionary computation based learning to rank
 - Optimize linear ranking function using DE (Differential Evolution)
- Our Baseline
 - Optimize non-linear ranking function using GP
 - Extension of RankGP

Comparison with existing methods

The effect of Differential Evolution based feature selection

Feature selection improves MAP score

Baseline (GP) versus Rank-PMBGP (TD2003)

The number of evaluations (log scale)

Although Baseline does not improve,
Rank-PMBGP improves
as the number of evaluations increases

Conclusion

- We proposed Probabilistic Model Building GP based method to optimize Non-linear Ranking Function
- The proposed method, Rank-PMBGP, outperforms GP based Baseline and some of the existing methods
- Although feature selection is effective, further research is required to reduce the search space
- Analysis of optimized ranking function is future work

Thank you!

If you have any questions, please feel free to e-mail to sato@iba.t.u-tokyo.ac.jp

Q&A

Why we employ POLE as Probabilistic Model Building GP?

- Learn graph structure and parameter at each generation
 - Better than other Bayesian network based PMBGPs with fixed structure
- Use EPT (Expanded Parse Tree)
 - Special function node push terminal symbols on trunk into leaves. In other words, terminal symbols appear only in leaves
 - Learning of Bayesian network becomes easy since symbols on trunk is reduced (only functions)

Features in LETOR

- low-level content features
 - ► tf: term frequency
 - idf: inverse document frequency
 - dl: document length
 - tfidf: multiplication of tf and idf
- high-level content features
 - ▶ BM25
 - **▶** LMIR
- Hyperlink-based features
 - PageRank
 - ► Topical PageRank
 - ► HITS
 - Topical HITS
 - ▶ HostRank
- Hybrid features
 - ► Hyperlink-based relevance propagation
 - ▶ Site map-based relevance propagation
- Total: 44 features in the LETOR-2 dataset

Why did the non-linear proposed method lose to linear RankDE?

- Could not search non-linear vast search space thoroughly
 - Learning is not saturated at 1,000,000 fitness evaluations
 - We could not increase the number of fitness evaluations more since MAP calculation is very time consuming
 - 1 run (5 folds) takes over 24 hours
 - A future work is to reduce the number of evaluations
- Note that overfitting did not occur otherwise did in GP based baseline

The number of evaluations

- **>**60,000
 - > Population size: 600, maximum generation: 100
- > 250,000
 - > Population size: 5000, maximum generation: 50
- **>** 1,000,000
 - Population size: 10000, maximum generation:100

Parameters of Rank-PMBGP

Parameters/Nodes	Settings
P_s	if population size is larger than 5000 use 0.05 otherwise use 0.2
P_e	if population size is larger than 5000 use 1 otherwise use 0.005
P_F	0.9
S_f	{+,-,*} (all function takes two arguments)
S_v	11 features (id : name) 5: dl of URL 7: HITS hub 8: HostRank 9: idf of body 10: idf of anchor 11: idf of title 12: idf of URL 18: LMIRJM of anchor 21: LMIRDIR of extracted title 23: LMIRABS of title 39: Hyperlink base score propagation (weighted in-link) }
S_c	$\{0.2, 0.4, 0.6, 0.8, 1.0\}$
The number of terminal symbols	16
depth limitation	8

Parameters of Baseline using GP

Parameter	Definition	Value
P_e	Elitist Reproduction Rate	Only 1 individual
P_c	Crossover Rate	Initial value = 0.95 , then change
		dynamically using AMRT
P_m	Mutation Rate	Initial value = 0.05 , then change
		dynamically using AMRT
$size_t$	Tournament Size	5
P_F	Functional Selection Rate	0.9

An example of optimized ranking function by Rank-PMBGP (Fold4)

Some measures to evaluate ranked list of documents

$$P@n = \frac{\text{No. of relevant docs in top } n \text{ results}}{n}$$

$$MAP = \frac{\sum_{q=1}^{Q} AP}{\text{No. of queries}}$$

$$MAP = \frac{\sum_{q=1}^{Q} AP}{\text{No. of queries}}$$
 $AP = \frac{\sum_{n=1}^{N} (P@n \times rel(n))}{\text{No. of relevant docs for this query}}$

$$NDCG@n = Z_n \sum_{j=1}^{n} \frac{2^{rel(j)} - 1}{\log(1+j)}$$
 $Z_n = \frac{1}{\sum_{j=1}^{n} \frac{1}{\log(1+j)}}$

Result on TD2004

The same tendency is observed

MAP (Mean Average Precision)

- Popular evaluation method for ranking, but time consuming
- Employed as fitness function in the proposed method

AP = (1+0.5+0.67)/3≒0.72

Average AP for all queries

$$\begin{bmatrix} D_2 \\ d_{21} \text{ relevant} \\ d_{22} \text{ irrelevant} \\ d_{23} \text{ relevant} \\ d_{23} \text{ relevant} \\ \end{bmatrix} \begin{array}{c} d_{21} \bigcirc \\ d_{23} \bigcirc \\ d_{23} \bigcirc \\ d_{22} \times \\ \end{bmatrix} \begin{array}{c} \mathbf{P@1} = 1/1 = 1 \\ \mathbf{P@2} = 2/2 = 1 \\ \mathbf{P@3} = 2/3 \stackrel{.}{=} 0.67 \\ \mathbf{AP} = (1+1+0.67)/3 \\ \stackrel{.}{=} 0.89 \\ \end{bmatrix}$$

 d_{13} irrelevant

MAP = (0.72 + 0.89)/2≒0.81

Problem Settings

- When query q and documents D are given, output proper ranked list of documents
- 問題設定
- ・学習データの集め方
- 特徴量