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Abstract—Ranking the set of search results according to their
relevance to a user query is an important task in an Information
Retrieval (IR) system such as a Web Search Engine. Learning the
optimal ranking function for this task is a challenging problem
because one must consider complex non-linear interactions be-
tween numerous factors such as the novelty, authority, contextual
similarity, etc. of thousands of documents that contain the user
query. We model this task as a non-linear ranking problem, for
which we propose Rank-PMBGP, an efficient algorithm to learn
an optimal non-linear ranking function using Probabilistic Model
Building Genetic Programming. To our knowledge, ours is the
first attempt to learn a non-linear ranking functions for IR using
evolutionary algorithms. We evaluate the proposed method using
the LETOR dataset, a standard benchmark dataset for training
and evaluating ranking functions for IR. In our experiments,
the proposed method obtains a Mean Average Precision (MAP)
score of 0.291, thereby significantly outperforming a non-linear
baseline approach that uses Genetic Programming.

I. INTRODUCTION

The amount of information available on the Web continues
to grow exponentially by the day. It is no longer the case
that the information we seek do not exist in the Web, but
the problem is to find the relevant information from a large
collection of documents. Web search engines provide an
efficient interface to the Web. In a typical search session, a
user enters one or more keywords to a search engine, which
we refer to as a query. The search engine then returns a ranked
set of results in the descending order of their relevance to the
user query. Often, there are millions of documents that match a
user query and the task of ranking those documents according
to their relevance is a challenging but an important one to a
Web search engine [1].

Accurate ranking of search results is an important task for
a Web search engine. If a search engine often ranks irrelevant
results as the top hits, then users get dissatisfied with that
search engine and will soon move to more competitive search
engines. Adverts are a main source of income for search
engines. If a search engine does not display relevant adverts
to user queries, the users will not click on those adverts,
resulting in reduced revenue to the search engine. Therefore,
the problem of ranking search results in information retrieval
systems have received much attention from both academia as
well as from the industry. In particular, the Learning to Rank
(LETOR) project by Microsoft Research1, and the Yahoo!
learning to rank challenge2 are noteworthy initiatives.

1http://research.microsoft.com/en-us/um/beijing/projects/letor/
2http://learningtorankchallenge.yahoo.com

Ranking search results retrieved for a user query is a
difficult problem because of several challenges. First, there are
numerous factors a search engine must take into consideration
when determining the rank of a search result such as the
content of the document (i.e. web page) (i.e. whether the
document contains the words in the query), the structure of
the document (i.e. whether the query appears in the title of
the document, its body or in an anchor text pointing to the
document), link structure (i.e. the number of in-bound and
out-bound links to the document), authority (i.e. encyclopedic
resources edited by numerous authors vs. personal blogs), and
novelty (i.e. how often does the content in a document is
revised and the last updated time). The exact combination
of those heterogenous factors that produces the best possible
ranking for a set of documents is not obvious. Second, the
ranking function must be simple enough to compute and
scalable to be used in a Web search engine. If a search engine
takes a long time to rank the retrieved set of documents, it
might lead to user dissatisfaction. Third, any approach that
learns a ranking function for information retrieval must be able
to efficiently learn from large datasets. Search engines record
the search sessions such as the query entered by the users
and the search results they visit subsequently. This process
enables us to collect large datasets that can be used as training
data to learn ranking functions that assign higher ranks to
documents that are visited by users. For example, LETOR
dataset contains over 25 million rank information annotated
documents for numerous queries entered by users in real-world
search sessions.

We propose a method to learn a non-linear ranking function
for information retrieval using Probabilistic Model Building
Genetic Programming (PMBGP). We refer to our proposed
method as Rank-PMBGP. PMBGP is an extension of genetic
programming (GP) using probabilistic models. Although there
have been several approaches proposed in prior work that can
learn a linear ranking function, to the best of our knowledge,
Rank-PMBGP is the first approach to learn non-linear ranking
functions for information retrieval using evolutionary algo-
rithms. The ability to learn non-linear ranking functions is
particularly important for information retrieval. For example,
consider the combination of the two features: the number of
occurrences of the query in the document, and the authority
of the document. If the number of occurrences of a query
in a document is high, it indicates that the document is
relevant to the query. However, sometimes spam web sites
include popular queries to attract web traffic. Therefore, the

http://research.microsoft.com/en-us/um/beijing/projects/letor/
http://learningtorankchallenge.yahoo.com


number of occurrences of a query in a document is a good
indicator of relevance only when the authority of the document
is high. Such conditional dependencies among factors that
influence the rank of a document can be captured only by
non-linear ranking functions. Consequently, non-linear ranking
function learning methods have shown superior performance
over methods that are limited to learning only linear ranking
functions [2].

Our contributions in this paper can be summarized as
follows.

• We propose a method to learn non-linear ranking func-
tions for information retrieval using probabilistic model
building genetic programming.

• We evaluate the proposed method using a standard
benchmark dataset that was previously proposed for
evaluating learning to rank methods for information re-
trieval. Our experimental results show that the proposed
method significantly outperforms a baseline method that
uses genetic programming to learn non-linear ranking
functions. Moreover, the performance reported by the
proposed method is comparable to that of the state-of-the-
art learning to rank methods that use evolutionary algo-
rithms. However, unlike prior work based on evolutionary
algorithms, our method can learn non-linear combinations
of features.

The remainder of this paper is organized as follows. In
Section II-A, we present the learning to rank problem in
the context of information retrieval. We then briefly describe
the foundations upon which our proposed method is estab-
lished: genetic programming (in Section II-C), and probabilis-
tic model building genetic programming (in Section II-D).
Next, in Section III, we introduce Rank-PMBGP, the proposed
method for learning a non-linear ranking function for informa-
tion retrieval. The benchmark dataset, LETOR, that we use to
train and evaluate the proposed method is detailed in Section
IV-A. In Section II-B, we introudce Mean Average Precision
(MAP) and Normalized Discounted Cumulative Gain (NDCG)
– the standard evaluation measures used in the information
retrieval community to compare the performance of different
rank learning methods. We compare the proposed method
against numerous previously proposed methods for learning to
rank in information retrieval in Section V. Finally, we discuss
the relevant prior work in Section V and conclude this paper.

II. BACKGROUND

A. Learning to rank

The problem of learning a function that can assign ranks for
a set of items arises in numerous contexts. For example, in a
web search scenario, we must rank the set of documents (i.e.
web pages) according to their relevance to the query entered
by a user. As a result of the increasing importance of web
search engines as an efficient interface to the vast amounts of
information available on the Web, the problem of learning to
rank has received special attention in the information retrieval
community. There are two main stages involved in learning to

rank for information retrieval: a) learning a ranking function
using a labeled dataset (i.e. training stage), b) applying the
learnt ranking function to assign ranks to a set of documents
retrieved for a user-query (i.e. ranking stage).

In the training stage, a ranking function learning algorithm
is presented with a ranked list of documents retrieved for a
particular query. To formally define the learning problem, let
us denote the set of queries by Q = {q1, q2, . . . , q|Q|}, in
which we use the notation, |Q|, to represent the number of
elements (i.e. cardinality) in the set Q. Likewise, we represent
the set of documents by D = {d1, . . . , d|D|}. Then, the
training dataset can be represented as a set of query-document
pairs, (qi, dj) ∈ Q × D, in which each query-document pair,
(qi, dj), is assigned with a relevance judgement, y(qi, dj),
indicating the relevance of the document dj to the query qi.
The relevance judgement y(qi, dj) can be expressed in several
ways. The simplest approach is to indicate a binary relevance
y(qi, dj) ∈ {0, 1}, depending on whether the document dj
is relevant to the query qi (i.e. y(qi, dj) = 1), or irrelevant
(i.e. y(qi, dj) = 0). Alternatively, one can assign a real-valued
relevance judgement that can be used to induce a total ranking
among the documents retrieved for a particular query.

Web search engines record each search session in a log
file called the search log to obtain relevance judgements.
Clickthorugh [3] is popular method to easily collect a large
collection of relevance judgements. In clickthrough approach,
a search engine records the urls that were clicked by a user
among all the urls displayed to that user for a particular
query. For example, let us assume three documents d1, d2,
and d3 is shown to a user in that order as the list of search
results for a particular query q. Moreover, let us assume that
the user did not click on the first document d1 and instead
clicked on the second document d2. This action is recorded
by the search engine before it directs the user to d2. In
the clickthrough approach to obtaining relevance judgements,
we assume that the document d2 is more relevant to the
query q than the document d1. Therefore, a relevance score is
assigned such that y(q, d2) > y(q, d1). However, no relevance
judgements are inferred for the documents such as d3 that
are not clicked on and appears below lowest ranked document
that is clicked by a user for a particular query (i.e. d2 in this
example). Because web search engines are used by millions of
users resulting in large search logs, the clickthrough approach
provides a cheap solution to obtain large training datasets that
can be used to train ranking function learning algorithms.

The goal in learning to rank is to learn a function f(q, d)
that assigns a ranking score indicating the degree of relevance
of a document d for a query q. First a query-document pair
(q, d) is represented by a feature vector ϕ(q, d). Numerous
feature have been proposed in prior work in learning to rank
such as the number of occurrences of the query q in the
title or the body of the document d, and PageRank [4] of
d. In Section IV-A, we detail the numerous features that are
used for training by our proposed method. Most prior work
on learning to rank model the ranking function f(q, d) as a
linearly weighted combination of the features in ϕ(q, d) as



follows,
f(q, d) = w⊤ϕ(q, d). (1)

Here, w is a vector representing the weight associated with a
particular feature in ϕ(q, d). We refer to the ranking function
given by Equation 1 as a linear ranking function because
it does not consider non-linear combinations of features in
ϕ(q, d). In contrast, our proposed method learns a non-linear
combinations of features, thus having a greater expressiveness.
Specifically, we model the problem of learning to rank as a
search problem, where we must find the optimal non-linear
combination of features representing a query-document pair
that assigns ranking scores similar to the scores assigned in
the training data.

Before we explain the search algorithm we use to find
the optimal non-linear combination of features that assigns
ranking scores for information retrieval, we must first devise
a method to evaluate the fitness of a given combination of
features. Let us denote the ranking function corresponding to
some non-linear combination of features in ϕ(q, d) by f(q, d).
Then we can use f(q, d) to assign ranking scores to the set
of documents D(q) retrieved for the query q. Next, we can
compare the list of ranked documents produced by f(q, d)
against the ranks assigned to the documents in D(q) in the
training dataset. The degree to which the two lists of ranks
agree is an indicator of the fitness of the combination of
features we use to define f(q, d). Next, in Section II-B, we
introduce the evaluation measures that are popularly used in
the information retrieval community to asses the agreement
between a list of ranked documents by a ranking function and
that by a human annotator.

B. Evaluation Measures

To evaluate a ranking produced by an algorithm for a set of
documents retrieved for a particular query, we can compare it
against the ranking induced by the scores assigned by a human
annotator for those documents. Precision at position n (P@n),
Mean Average Precision (MAP), and normalized discounted
cumulative gain (NDCG) are three widely used rank evaluation
measures in the information retrieval community. Both those
evaluation measures are in the range [0, 1], where a method
that produces the exact ranking as in the gold standard achieves
the score of 1. Next, we describe each of those evaluation
measures in detail.

Precision at rank n (P@n) [5] measure is defined as the
proportion of the relevant documents among the top n-ranked
documents,

P@n =
No. of relevant docs in top n results

n
. (2)

Average precision averages the P@n at over different n
values to produce a single measure for a given query as
follows,

AP =

∑N
n=1(P@n× rel(n))

No. of relevant docs for this query
. (3)

Here, N is the number of retrieved documents, and rel(n) is
a binary function that returns the value 1 if the n-th ranked

document is relevant to the query under consideration and 0
otherwise. Mean average precision (MAP) is computed as the
average of AP over all queries in the dataset.

NDCG considers the reciprocal of the logarithm of the rank
assigned to relevant documents. For a ranked list of documents
retrieved for a query, NDCG value at position n, NDCG@n,
is computed as follows,

NDCG@n = Zn

n∑
j=1

2r(j) − 1

log(1 + j)
. (4)

Here, r(j) is the rating of the j-th document in the ranked
list, and the normalization constant Zn is chosen such that a
perfectly ranked list would obtain an NDCG@n score of 1.
Specifically, it is given by,

Zn =
1∑n

j=1
1

log(1+j)

. (5)

We use Mean Average Precision (MAP) as the fitness function
because it provides a single value that we can use to determine
the fitness of the ranking function f(q, d). All three measures,
MAP, NDCG, and P@n, are used to evaluate the performance
of the final learnt ranking function.

C. Genetic Programming

Genetic Programming (GP) [6] is a widely used and suc-
cessful method to optimize non-linear combinations of features
represented by tree structures. First, GP randomly generates
M tree structures each corresponding to some non-linear
combination of features. In subsequent iterations, individual
tree structures are evaluated using some fitness function and
the top M × Pe individuals with the highest fitness values
are retained to the next generation. Here, Pe denotes the elite
rate that determines the number of individuals retained for the
next generation. From those retained individuals, GP randomly
selects N individuals and performs mutation and cross-over
to produce offsprings. Mutation replaces a subtree in an indi-
viduals with a different subtree, whereas crossover partitions
individuals into constituent subtrees and inter-change subtrees
between different individuals. Over the generations, subtree
structures that correspond to salient feature combinations are
retained in the population, which are referred to as building
blocks. The above-mentioned procedure is repeated until some
pre-defined termination criterion is met. The pseudo code
for GP in shown in Algorithm 1. Therein, Pg denotes the
population (i.e. set of individuals) at the g-th generation, and
Sg is an elite individual selected for reproduction at the g-th
generation.

D. Probabilistic Model Building GP

Probabilistic model building GPs (PMBGP) are a variant of
Estimation of Distribution Algorithms (EDA) [7], which are
generative model based evolutionary computation algorithms,
for optimizing tree structures. PMBGPs estimate probability
distributions using individuals that have the highest fitness
values. New individuals are generated by sampling from the
estimated probability distribution. PMBGPs can be categorized



Algorithm 1 Genetic Programming(GP)
1: g ← 0
2: Pg ← Initialize M individuals
3: Evaluate Pg

4: while terminate criterion is False do
5: g ← g + 1
6: Sg ← Select N (N ≤M) superior individuals
7: Pg ← Copy M ∗ Pe elite individuals
8: Pg ← Generate M(1 − Pe) individuals from Sg , using

crossover or mutation
9: Evaluate Pg

10: end while

into two groups. The first type of PMBGPs exploit Probabilis-
tic Context Free Grammar (PCFG) to learn subtree building
blocks [8], The second type of PMBGPs use prototype trees,
which extends EDAs proposed for one dimensional arrays to
handle tree structures [9]. The prototype tree-based approach
is essentially equivalent to EDAs. This property of prototype
tree-based PMBGPs enables us to incorporate techniques
devised in the field of EDAs. For example, sampling of
individuals can be done using Loopy Belief Propagation (LBP)
[10]. Using the notation we used in Algorithm 1, we show
the pseudo code for PMBGP in Algorithm 2. Although PM-
BGPs have shown better performance than GPs in benchmark
problems [11], comparatively to GPs, PMBGPs are yet to be
applied to large-scale real-world problems such as the learning
to rank for information retrieval which we study in this paper.

Algorithm 2 PMBGP
1: g ← 0
2: Pg ← Initialize M individuals
3: Evaluate Pg

4: while terminate criterion is False do
5: g ← g + 1
6: Sg ← Select N (N ≤M) superior individuals
7: Dg ← Estimate distribution from Sg

8: Pg ← Copy M ∗ Pe elite individuals
9: Pg ← Sampling M(1− Pe) individuals from Dg

10: Evaluate Pg

11: end while

III. PROPOSED NON-LINEAR RANK LEARNING METHOD:
RANK-PMBGP

We propose Rank-PMBGP, a method to learn non-linear
ranking functions for information retrieval using PMBGP.
Specifically, we use Program Optimization with Linkage Es-
timation (POLE) [12] as the PMBGP method. POLE is a
prototype tree based PMBGP method, which first translates
tree structures to one-dimensional arrays and then apply EDAs
to those arrays. POLE estimates mulivariate dependencies be-
tween nodes using Bayesian networks. POLE uses Expanded
Parse Trees (EPT) [13] to represent the chromsomes thereby
reducing the number of symbols in the tree trunk. EPT pushes
terminal nodes on trunk to the leaf nodes using a special
function node L. Given a list of arguments as the input, the
function L returns the first argument. Therefore, in POLE, the

TABLE I
NODE NAME AND MEANING OF THE PROPOSED METHOD

node name node type meaning
Sf function (trunk) the set of function nodes {+,-,*}
Sv terminal (leaf) the set of variable (feature) nodes
Sc terminal (leaf) the set of constant nodes

symbols on trunk are limited to functions. This property of
POLE simplifies the task of learning a Bayesian network. This
is particularly important in learning to rank for information
retrieval because the number of terminal symbols (features)
in our task is much higher than that in benchmark problems
such as MAX [14] or Royal Tree [15] for which PMBGPs have
been applied so far. The types of nodes used by Rank-PMBGP
are summarized in Table I. Rank-PMBGP considers non-linear
combinations of features because it uses multiplication (shown
by * in Table I) as a function node. We use MAP as fitness
function in Rank-PMBGP.

Rank-PMBGP consists of five steps as shown below.
Step 1: Input

Set parameters of PMBGP. Obtain train, validation,
and test data.

Step 2: Training by PMBGP
Train a non-linear ranking function by PMBGP.
MAP computed using train data is considered as the
fitness function.

Step 3: Validation
Evaluate the individuals that exist in the population
at the final generation by the MAP computed over
the validation data.

Step 4: Output
Select the individual that corresponds to the maxi-
mum value of the following sum:
MAP on final generation at training +
MAP on validation data.

Step 5: Ranking
Rank the documents in the test dataset using the
learnt non-linear ranking function.

IV. EXPERIMENTS

A. Dataset

We use the LETOR (version 2.0) benchmark dataset [16]
that has been widely used in prior work on learning to rank
for information retrieval. The LETOR version 2.0 consists of
TD2003 and TD2004 datasets, which were part of the topic
distillation task of the Text REtrieval Conference (TREC) in
year 2003 and 2004. TD2003 dataset contains 50 queries and
TD2004 dataset contains 75 queries. The document collection
contains 1, 053, 110 documents together with 11, 164, 829
hyperlinks and is based on a January, 2002 crawl of the .gov
domain. Topic distillation aims to find a list of documents
relevant to a particular topic. The TREC committee provides
judgements for the topic distillation task. For each query
in TD2003 and TD2004 datasets, there are about 1, 000
documents listed. Each query-document pair is given a binary



TABLE II
FEATURES IN THE LETOR TD2003 AND TD2004 DATASETS.

Category Feature No. of
features

Content (low-level)

tf [5] 4
idf [5] 4
dl [5] 4
tfidf [5] 4

Content (high-level) BM25 [17] 4
LMIR [18] 9

Hyperlink

PageRank [4] 1
Topical PageRank [21] 1
HITS [19] 2
Topical HITS [21] 2
HostRank [20] 1

Hybrid Hyperlink-base relevance
propagation [22]

6

Sitemap-based relevance
propagation [23]

2

Total 44

judgement indicating whether a document is relevant or non-
relevant for a particular query.

A query-document pair in the LETOR dataset is represented
using a 44 features as shown in Table II. The features include
numerous ranking heuristics popularly used in the information
retrieval community to rank a list of retrieved documents.
The set of features includes low-level features such as, term
frequency (tf), inverse document frequency (idf), document
length (dl) combinations of low-level features such as tf*idf
[5], as well as high-level features such as BM25 [17] and
LMIR [18]. Hyperlink structure provides useful clues about
the relevancy of a web page. Consequently, several features are
computed using the hyperlink information in LETOR datasets
such as PageRank [4], HITS [19], HostRank [20], topical
PageRank and topical HITS [21]. Following the standard
practice, all features are normalized to [0, 1] range prior to
training. For the TD2003 and TD2004 datasets, we define
two values of ratings 0 and 1 respectively corresponding
to relevant and non-relevant documents in order to compute
NDCG scores. In our evaluations, we report the average values
taken over all the queries in a dataset as P@n and NDCG@n.

B. Experimental Settings

The parameters of Rank-PMBGP (POLE) is described in
Table III. Individuals in POLE are intialized by GROW,
where PF is the selection rate of functions. POLE uses
truncate selection, where M ∗ Ps individuals are selected and
used for construction of Bayesian networks and estimation of
parameters.

C. Results

First, we examine the effect of feature selection. We con-
sider that proper limitation of the search space by feature
selection is effective because the search space of non-linear
functions with 44 features in TD2003 and TD2004 are too vast
to optimise. Due to the time limitation, we examine the effect
of feature selection in only TD2003. We show the condition
with all features and selected features in Table IV and V.

TABLE III
PARAMETER VALUES FOR THE PROPOSED METHOD (RANK-PMBGP)

Prameters Meaning value
Ps Selection Rate if population size is larger

than 5000 use 0.05 other-
wise use 0.2

Pe Elite Rate if population size is larger
than 5000 use 1 otherwise
use 0.005

PF Functional Selection Rate 0.9

Feature selection is done, using the knowledge of existing
method, RankDE [24]. Features whose absolute value of
optimised weight in RankDE is larger than 2 are selected and
showed in Table V. The proposed method and a baseline for
comparison, non-linear GP, which is an extension of RankGP
to non-linear, are examined. We conduct experiments 10 times
and show the effect of feature selection in Fig. 1. The number
of fitness evaluation is 60000 (population size is 600, and the
maximum generation is 100). Fig. 1 clearly illustrates that
feature selection improves MAP in both GP and PMBGP.

TABLE IV
CONDITION OF SYMBOLS 1: ALL-SYMBOLS

name value
Sf {+,-,*} (all function takes two arguments)
Sv all 44 features in LETOR

Sc

{ 0.1, 0.2，0.3, 0.4，0.5，
0.6，0.7，0.8，0.9，1.0 }

The number of
terminal symbols 54
depth limitation 8

TABLE V
CONDITION OF SYMBOLS 2: FEW-SYMBOLS (SELECTED)

name value
Sf {+,-,*} (all function takes two arguments)

Sv

11 features ( id : name)
5: dl of URL
7: HITS hub
8: HostRank
9: idf of body
10: idf of anchor
11: idf of title
12: idf of URL
18: LMIR．JM of anchor
21: LMIR．DIR of extracted title
23: LMIR．ABS of title
39: Hyperlink base score propagation
(weighted in-link) }

Sc {0.2, 0.4, 0.6, 0.8, 1.0}
The number of 16terminal symbols
depth limitation 8

Second, we investigate the trade off between the learning
time, the number of evaluations, and the quality of the output.
We conduct experiments on three different condition of the
number of evaluations: 60000 (population size=600, maximum
generation=100), 250000 (population size=5000, maximum
generation=50), 1000000 (population size=10000, maximum
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Fig. 1. The effect of feature selection in TD2003

generation=100). We visualize the results in Fig. 2. These
results show the same information that PMBGP becomes
better than GP as the number of evaluations increases in both
TD2003 and TD2004. It is worth to note that Rank-PMBGP
behaves differently on different datasets. In TD2003, MAP of
Rank-PMBGP improves logarithmly according as the number
of evaluations increases while that improves more sharply in
TD2004.

Finally, we compare the performance of the proposed
method and exisiting methods on TD2003 in Table VII.
Description of each of those algorithms is the following.

• RankSVM
This is an application of support vector machine, which
is a well known binary classifier based on margin max-
imization, to learning to rank. RankSVM is one of the
most popular pairwise approach, and the performance of
RankSVM is provided as baseline of LETOR.

• RankBoost
RankBoost combines a variety of ranking scores based
on AdaBoost. The features in LETOR are employed
as weak classifiers in this method. The performance of
RankBoost is also provided as baseline of LETOR, as
well as RankSVM.

• SwarmRank
This method learns linear ranking functions and directly
optimises MAP over given dataset, using particle swarm
optimization (PSO).

• RankGP
This is an application of GP to learning to rank. Linear
ranking functions represented by tree structures evolves,
optimising MAP directly.

• RankDE
RankDE is a differential evolution (DE) based ranking
algorithm. RankDE optimises wights of linear combi-
nations of features. To our knowledge, RankDE is the
best algorithm among existing ranking algorithm using
evolutionary computation.

• GP (baseline)
This is the baseline that we conducted experiments.
This is an extension of RankGP for non-linear ranking

functions.
• Rank-PMBGP (proposed)

This is the proposed method using PMBGP.

GP in the present paper uses tournament selection and
adopts adaptive mutation rate tuning method (AMRT) [25],
as well as RankGP [26]. AMRT increases mutation rate and
decreases crossover rate when population is likely to converge.

TABLE VI
PARAMETERS OF GP

Prameters Meaning value
Pe Elitist reproduction Rate only 1 inividual

Pc 　 crosover rate

start:0.95
change dynamically

using AMRT

Pm mutation rate

start:0.05
change dynamically

using AMRT
sizet tournament size 5
PF Functional Selection Rate 0.9

Although RankDE is better than Rank-PMBGP, Rank-
PMBGP overwhelms RankSVM, RankBoost, SwarmRank,
RankGP and baseline (GP) with all measures: MAP, P@n
and NDCG. Especially, the improvements of MAP reported by
Rank-PMBGP over RankSVM, RankBoost, SwarmRank and
baseline (GP) are statistically significant at 5 % significant
level on paired t-test.

V. RELATED WORK

Learning to rank is divided into three types:pointwise ap-
proach, pairwise approach and listwise approach. The point-
wise approach [27], [28] deals with each query-document pair
independently during entire training and ranking. Because the
pointwise approach dismiss the relative preferences between
query-document pairs for the same query, its performance is
the worst in three types. In contrast, the pairwise approach
[29]–[32] considers preference between two documents dj
and dk retrieved for the same query qi and creates pairwise
constraints. The pairwise approach only considers prefer-
ence between two documents and dismiss that between other
documents for the same query. This fundamental problem
sometimes causes awful results at test time because learning
to rank for information retrieval aims to estimate the total
ordering of the entire documents but not partial orderings
between two documents. The listwise approach [33]–[36] gets
over drawbacks mentioned about the pointwise and pairwise
approaches, considering the entire set of documents retrieved
for the same query. It is known that pairwise methods have bet-
ter performance than pointwise methods, and listwise methods
have still better performance than pairwise methods. However,
it is not true that listwise is the best approach of learning
to rank because there are trade off between performance and
trouble to create training data. For example, pairwise methods
use training data in partial order but listwise methods need
training data in total order. It is more laborious to create train-
ing data in total order than in partial order. The present paper
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Fig. 2. the trade off between the number of evaluations and MAP (Left: TD2003, Right: TD2004)

TABLE VII
RANKING PERFORMANCE ON THE TD2003

non-linear GP Rank-PMBGP
Method RankSVM RankBoost SwarmRank RankGP RankDE baseline (Proposed)
MAP 0.256 0.212 0.209 0.283 0.339 0.277 0.291
P@1 0.420 0.260 0.453 0.520 0.600 0.528 0.548
P@2 0.350 0.270 0.330 0.420 0.400 0.444 0.468
P@3 0.340 0.240 0.269 0.370 0.333 0.380 0.405
P@4 0.300 0.230 0.223 0.330 0.300 0.336 0.352
P@5 0.264 0.220 0.207 0.280 0.280 0.294 0.294
P@6 0.243 0.210 0.188 0.270 0.250 0.265 0.267
P@7 0.234 0.211 0.185 0.250 0.243 0.250 0.247
P@8 0.233 0.193 0.173 0.240 0.237 0.229 0.232
P@9 0.218 0.182 0.164 0.230 0.222 0.214 0.215
P@10 0.206 0.178 0.151 0.220 0.210 0.199 0.204
NDCG@1 0.420 0.260 0.453 0.520 0.600 0.528 0.548
NDCG@2 0.370 0.280 0.343 0.450 0.445 0.463 0.486
NDCG@3 0.379 0.270 0.307 0.420 0.388 0.413 0.438
NDCG@4 0.363 0.272 0.284 0.390 0.356 0.378 0.396
NDCG@5 0.347 0.279 0.278 0.380 0.336 0.345 0.353
NDCG@6 0.341 0.280 0.271 0.370 0.310 0.321 0.329
NDCG@7 0.340 0.287 0.273 0.360 0.300 0.306 0.311
NDCG@8 0.345 0.282 0.270 0.350 0.292 0.288 0.295
NDCG@9 0.342 0.282 0.267 0.350 0.279 0.275 0.280
NDCG@10 0.341 0.285 0.263 0.350 0.267 0.261 0.269

proposes pairwise based methods, which is nicely balanced in
performance and trouble to prepare training data.

Some GP based learning to rank methods have been already
proposed. RankGP [26] learns linear ranking function using
GP. RankGP regards linear ranking functions as individuals
and use adaptive mutation training method [25]. [37] pro-
poses non-linear ranking function optimization by GP. [37]
creates non-linear ranking function better than BM25 using
only simple features:term frequency(tf), inverse document fre-
quency(idf), document length(dl) and so on. Today’s learning
to rank regard functions combined simple features as feature,
and optimises ranking function using those combined features
and simple features. We propose non-linear learning to rank
by GP and PMBGP using those combined features and simple
features, and therefore this paper is quite different from
[37], which only uses simple features. Other evolutionary
computation based methods have been also proposed. Those
methods are described in Section .

One of the most successful non-linear optimisation for
learning to rank is GBDT (Gradient Boosted Decision Tree)
[38], [39]. GBDT is boosting using regression trees and it
appears that GBDT based learning to rank tends to converge
local optima more frequently than evolutionary computing
based learning to rank because GBDT updates its models
using local gradient. Yahoo! Learning to Rank Challenge
[2] employs GBDT as a baseline. We can not compare the
performance of the proposed method and that of GBDT
because there is no result of GBDT on LETOR 2.0 and we do
not have too much time to experiment GBDT on LETOR 2.0
The comparison between the proposed method and GBDT is
a future work.

VI. CONCLUSION

This paper proposed Rank-PMBGP, which is the novel non-
linear ranking function optimization using a PMBGP, POLE.
It is an advantage over existing ranking algorithms for infor-



mation retrieval that Rank-PMBGP directly optimizes MAP
without requiring any convex approximations. We evaluated
the proposed method using the standard benchmark datasets,
LETOR. In our experiments, the proposed method defeats a
non-linear baseline approach using GP and competes with
the state-of-the-art linear ranking methods using evolutionary
algorithms.

Due to the time limitation, some tasks are left to future
work. First, the performance of the proposed method seems
to improve if more the number of evaluations is given. Second,
we show that feature selection using knowledge of the existing
method improves performances but more sophisticated fea-
ture selection might influence the performance significantly.
Finally, although, in the small number of evaluations, GP
competes or overwhelms PMBGP, PMBGP becomes better
as the number of evaluations increases. Therefore, hybrid
approach based on migration model using GP and PMBGP
or switching from GP to PMBGP seems to works well.
Combination of GP and PMBGP in learning to rank is future
work.
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