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PMBGP:	
  Probabilis)c	
  Model	
  Building	
  
Gene)c	
  Programing	
  (GP)	


•  EDAs	
  deal	
  with	
  tree	
  structures,	
  like	
  GP	
  
1.  PCFG	
  (Probabilis)c	
  Context	
  Free	
  Grammar)	
  

based	
  methods	
  
– Learn	
  produc)on	
  rule	
  probabili)es	
  

2.  Prototype	
  tree	
  based	
  methods	
  (current	
  
research)	
  
– Convert	
  full	
  α-­‐ary	
  tree	
  structures	
  to	
  1	
  dimensional	
  
arrays	
  in	
  breadth-­‐first	
  order	
  and	
  apply	
  GA-­‐type	
  
EDAs	
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The	
  same	
  problem	
  is	
  pointed	
  out	
  in	
  GA-­‐type	
  EDAs,	
  
	
  but	
  sampling	
  using	
  Loopy	
  Belief	
  Propaga)on	
  	
  

is	
  known	
  as	
  a	
  way	
  to	
  overcome	
  it	
  	

5	


The	
  weak	
  point	
  of	
  prototype	
  tree	
  
based	
  PMBGP	


Bayesian	
  Network	
  
constructed	
  from	
  	
  
best	
  solu)ons	


*
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 0.5	


Reflects	
  	
  
most	


The	
  solu)on	
  which	
  has	
  the	
  
highest	
  joint	
  probability	
  	
  
(MPS:	
  Most	
  Probable	
  

Solu)on)	


tradi)onal	
  sampling	
  does	
  not	
  always	
  generate	
  MPS	
  	




Mo)va)on	


•  Improvement	
  of	
  sampling	
  to	
  generate	
  always	
  MPS	
  
will	
  enhance	
  PMBGP	
  

POLE	
  (a	
  prototype	
  tree	
  based	
  PMBGP)	
  +	
  Loopy	
  Belief	
  Propaga)on	
  

POLE	
  (a	
  prototype	
  tree	
  based	
  PMBGP)	
  +	
  Loopy	
  Belief	
  Propaga7on	
  

We	
  propose	
  POLE-­‐BP,	
  and	
  compare	
  its	
  performance	
  	
  
against	
  POLE	
  and	
  Simple	
  GP	
  in	
  3	
  benchmark	
  experiments	
  	


POLE-­‐BP	
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Loopy	
  Belief	
  Propaga)on,	
  which	
  effects	
  EDAs	
  well,	
  is	
  the	
  	
  
appropriate	
  way	
  to	
  improve	
  sampling	
  of	
  prototype	
  tree	
  based	
  PMBGP	
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POLE	
  :	
  Program	
  Op)miza)on	
  with	
  
Linkage	
  Es)ma)on	
  	


•  Prototype	
  tree	
  based	
  PMBGP	
  
•  Use	
  Bayesian	
  Network	
  as	
  probabilis)c	
  model	
  
•  Use	
  EPT	
  (Expanded	
  Parse	
  Tree)	
  as	
  chromosome	
  
– Guarantee	
  syntac)c	
  correctness	
  	
  
– Reduce	
  symbols	
  on	
  trunk	
  and	
  condi)onal	
  probability	
  
table	
  size,	
  and	
  es)mate	
  probabili)es	
  more	
  
accurately	
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EPT	
  :	
  Expanded	
  Parse	
  Tree	


*	
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Normal	
  GP	
  tree	
 EPT	
  (gray	
  nodes	
  are	
  introns)	


f (x, y) = (sin(y)+π )cos(x)
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L(x0, x1,…) = x0



The	
  details	
  of	
  POLE	

1.  Ini)aliza)on	
  
2.  Evalua)on	
  
3.  Selec)on	
  
4.  Construc)on	
  of	
  Bayesian	
  Network	
  	
  

by	
  K2	
  algorithm	
  
–  Bayesian	
  informa)on	
  criteria	
  (BIC)	
  is	
  used	
  to	
  

evaluate	
  networks	
  

5.  Genera)on	
  of	
  new	
  individuals	
  
–  Sampling	
  ALL	
  individuals	
  by	
  Probabilis)c	
  Logic	
  

Sampling	
  (PLS)	
   10	
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LBP	
  :	
  Loopy	
  Belief	
  Propaga)on	
  
(Loopy	
  max-­‐sum)	


•  Infer	
  MPS	
  approximately,	
  but	
  succeeded	
  in	
  many	
  
applica)ons:	
  image	
  processing,	
  mul)-­‐agent	
  
system	
  and	
  EDAs	
  

•  Repeatedly	
  update	
  Messages,	
  which	
  are	
  locally	
  
calculated	
  joint	
  probabili)es	
  

•  Must	
  be	
  run	
  on	
  factor	
  graph	
  

	
  
	
  
	
  
	
  
•  Transform	
  Bayesian	
  Network	
  to	
  equivalent	
  	
  
Factor	
  Graph	
  

•  Run	
  Loopy	
  Belief	
  Propaga)on	
  on	
  the	
  Factor	
  
Graph	
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POLE-­‐BP:	
  The	
  proposed	
  method	


•  Decrease	
  the	
  number	
  of	
  POLE’s	
  sampling	
  by	
  1,	
  
and	
  carry	
  the	
  individual	
  generated	
  by	
  LBP	
  over	
  
the	
  next	
  genera)on	


1.  Ini)aliza)on	
  
2.  Evalua)on	
  
3.  Selec)on	
  
4.  Construc)on	
  of	
  Bayesian	
  Network	
  
5.  Genera)on	
  of	
  new	
  individuals	
  by	
  sampling	
  
–  Sample	
  M-­‐1	
  individuals	
  (M:	
  popula)on	
  size)	
  

6.  Graph	
  transforma)on	
  
–  The	
  Bayesian	
  Network	
  constructed	
  at	
  step	
  4	
  is	
  

transformed	
  to	
  the	
  equivalent	
  factor	
  graph	
  
7.  Generate	
  MPS	
  by	
  LBP	
  on	
  the	
  factor	
  graph	
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Comparison	
  of	
  individual	
  genera)on	


1.  Building	
  Bayesian	
  Network	
  
2.  Sampling	
  M-­‐1	
  individuals	
  from	
  

Bayesian	
  Network	
  
3.  Transforming	
  Bayesian	
  

Network	
  to	
  Factor	
  Graph	
  
4.  Genera)ng	
  the	
  individual	
  

having	
  the	
  highest	
  joint	
  
probability	
  (MPS)	
  by	
  LBP	
  

5.  	
  M-­‐1	
  sampled	
  individuals	
  and	
  
MPS	
  generated	
  by	
  LBP	
  are	
  
carried	
  to	
  the	
  next	
  genera)on	
  

1.  Building	
  Bayesian	
  Network	
  
2.  Sampling	
  M	
  individuals	
  from	
  

Bayesian	
  Network	
  	
  
(M:	
  popula)on	
  size)	
  

3.  	
  M	
  sampled	
  individuals	
  are	
  
carried	
  to	
  the	
  next	
  genera)on	
  

Conven)onal	
  (POLE)	
  	
 Proposed	
  (POLE-­‐BP)	
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The	
  details	
  of	
  POLE-­‐BP	

1.	
  Ini)aliza)on:	
  Randomly	
  generate	
  solu)ons	
  (trees)	
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The	
  details	
  of	
  POLE-­‐BP	

2.	
  Evalua)on:	
  Evaluate	
  solu)ons	
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The	
  details	
  of	
  POLE-­‐BP	


3.	
  Selec)on:	
  Choice	
  superior	
  solu)ons	
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The	
  details	
  of	
  POLE-­‐BP	


K2	
  Algorithm	


4.	
  Construc)on	
  of	
  Bayesian	
  Network	
  on	
  tree	
  structure	
  	
  	


Arrows	
  represent	
  dependencies	
  	
  
between	
  nodes	
  

Condi)onal	
  Probabili)es	


Tree	
  edge	
  	


Edges	
  of	
  Bayesian	
  Network	
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115	
 120	
110	
115	
 115	
Best	
  Solu)ons	




The	
  details	
  of	
  POLE-­‐BP	

5.	
  Sampling	
  M-­‐1	
  individuals	
  (M:	
  popula)on	
  size):	
  	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  Sample	
  from	
  ancestors	
  	
  

+

*

Prior	
  Prob	


+	
 0.7	


*	
 0.2	


L	
 0.1	


Parent	
 Child	
 Condi7onal	
  Prob	


+	
 +	
 0.6	


+	
 *	
 0.2	


+	
 L	
 0.2	


*	
 +	
 0.05	


*	
 *	
 0.15	


*	
 L	
 0.8	


L	
 +	
 0.25	


L	
 *	
 0.2	


L	
 L	
 0.55	


①	
②	


③	
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The	
  details	
  of	
  POLE-­‐BP	


	
  Bayesian	
  Network	
  :	
  Directed	
  Graph	
 	
  Factor	
  Graph	
  :	
  Undirected	
  Graph	


Factor:	
  prior	
  and	
  condi)onal	
  probability	
  	
  	
  	
  	
Directed	
  Edge:	
  condi)onal	
  probability	
  	
  	
  	
  	


Nodes	
  without	
  parents:	
  prior	
  probability	
  	
  	
  	
  	
 Undirected	
  Edge:	
  Only	
  represent	
  connec)on	
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6.	
  Graph	
  Transforma)on	




xmax = argmax
x

µ fs→x (x)
s∈ne(x )
∑

$

%
&
&

'

(
)
)

2.	
  Message	
  Passing	
  	


3.	
  Get	
  MPS	
  	


µx→ f (x) = 0
µx→ f (x) =αxf + µ fl→x (x)

l∈ne(x )\ f
∑The	
  others	


leafs	


Messages	
  from	
  variable	
  to	
  factor	


µ f→x (x) = ln f (x)leafs	


µ f→x (x) = max
x,x1,...,xM

ln f (x, x1,...xM )+ µxm→ f (xm )
m∈ne( fs )\x
∑

$

%
&
&

'

(
)
)

The	
  others	


Messages	
  from	
  factor	
  to	
  variable	


Joint	
  probability	
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The	
  detail	
  of	
  POLE-­‐BP	


1.	
  Ini)alize	
  all	
  messages	
  to	
  0	

7.	
  Generate	
  MPS	
  by	
  LBP	
  on	
  the	
  factor	
  graph	
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The	
  detail	
  of	
  POLE-­‐BP	
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  messages	
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  0	
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  MPS	
  by	
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  factor	
  graph	
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Experiments	

•  Benchmark	
  on	
  3	
  problems	
  with	
  different	
  
characters:	
  
– MAX	
  
– Decep)ve	
  MAX	
  (DMAX)	
  (strong	
  decep)veness)	
  
– Royal	
  Tree	
  (many	
  symbols)	
  

•  Compared	
  the	
  performance	
  of	
  POLE-­‐BP(proposed),	
  
POLE	
  and	
  Simple	
  GP(no	
  muta)on)	
  
– The	
  rela)on	
  between	
  the	
  average	
  number	
  of	
  
evalua)ons	
  and	
  tree	
  size	
  (the	
  number	
  of	
  nodes)	
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The	
  whole	
  result	
  (The	
  number	
  of	
  evalua)ons)	


MAX	
  
(Normal)	


DMAX	
  
(Decep7veness)	


Royal	
  Tree	
  
(Many	
  symbols)	


The	
  number	
  
of	
  evalua)ons	
  

Versus	
  
Tree	
  size(the	
  
number	
  of	
  
nodes)	


Sta)s)cal	
  
significance	
  	
  

&	
  	
  
Decreasing	
  

rate	


•  POLE-­‐BP	
  is	
  beqer	
  
for	
  depth	
  =	
  6,	
  7,	
  8	
  
at	
  1%	
  significance	
  
level.	
  

•  Average	
  23.7%	
  
decreased.	
  

•  No	
  difference.	
 •  POLE-­‐BP	
  is	
  beqer	
  for	
  
depth	
  =	
  6,	
  7	
  at	
  1%	
  
significance	
  level.	
  

•  Average	
  23.6%	
  
decreased.	
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  beqer	
  
for	
  depth	
  =	
  6,	
  7,	
  8	
  
at	
  1%	
  significance	
  
level.	
  

•  Average	
  23.7%	
  
decreased.	
  

•  No	
  difference.	
 •  POLE-­‐BP	
  is	
  beqer	
  for	
  
depth	
  =	
  6,	
  7	
  at	
  1%	
  
significance	
  level.	
  

•  Average	
  23.6%	
  
decreased.	
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Conclusion	


•  We	
  proposed	
  the	
  hybrid	
  PMBGP	
  combining	
  
POLE	
  and	
  Loopy	
  Belief	
  Propaga)on	
  

•  LBP	
  reduces	
  the	
  average	
  number	
  of	
  
evalua)ons	
  to	
  get	
  the	
  op)mum	
  solu)on	
  in	
  
PMBGP	
  as	
  well	
  as	
  GA-­‐type	
  EDAs	
  

•  LBP	
  enhances	
  the	
  search	
  ability	
  in	
  small	
  
popula)on	
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Future	
  work	


•  Analyze	
  how	
  LBP	
  works	
  in	
  PMBGP	
  
•  Real	
  world	
  applica)on	
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MAX	
  problem	


•  Search	
  the	
  func)on	
  which	
  returns	
  the	
  biggest	
  
value	
  

A purpose of the MAX problem is to search a function that
returns the largest real value within the limits of a maximum
tree depth. In this problem, three symbols described below are
used.

F = {+, ∗}, T = {0.5} (6)

An optimum solution can be obtained by the following pro-
cedure. First, create the value “2” using four “0.5” symbols
and three “+” symbols. Then, multiply the created “2”s using
“*” symbols. 22Dp−3 represents the optimum value for a given
maximum depth Dp.
2) Results and Analysis: Let tree size be the number of

nodes contained in the optimum structure, which can be
represented by 2Dp − 1 in the MAX problem. Table II
presents the average number of fitness evaluations and standard
deviations in 20 trials. Fig. 2 visualizes Table II and describes
the relationship of tree size versus the average number of
fitness evaluations for the three models. Table III describes the
results of the t-test, which indicates that POLE-BP is superior
to POLE and SGP. According to Table III, the P-value for
POLE-BP and POLE is smaller than 1% in Dp = 6, 7, 8.
This means that difference between POLE-BP and POLE for
Dp = 6, 7, 8 is statically significant at 1% significant level.
From the result above, LBP works better in deeper problems
which requires larger population.

TABLE II
THE NUMBER OF FITNESS EVALUATIONS FOR THE MAX PROBLEM.
VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE

GIVEN IN PARENTHESES

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
average
stdev

380
(87)

1272
(310)

3475
(918)

10238
(1567)

POLE
average
stdev

435
(85)

1648
(263)

4900
(307)

14679
(1353)

SGP
average
stdev

1416
(249)

3208
(442)

8513
(1136)

59950
(4801)

Fig. 2. The number of evaluations required for the MAX problem

TABLE III
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE MAX PROBLEM

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
vs POLE 5.02E-2 2.0E-4 1.02E-06 underflow
POLE-BP
vs SGP 3.33E-15) underflow underflow underflow

B. Experiment 2: Deceptive MAX (DMAX) Problem

1) Problem Description: In order to investigate how LBP
works in a deceptive problem, we also applied POLE-BP
to a deceptive MAX problem (DMAX problem) [1], which
is a deceptive extension of the MAX problem. The DMAX
problem has the same objective as the MAX problem: to
find functions which return the largest real value under the
limitation of a maximum tree depth Dp.

F = {add5,multiply5} (7)
T = {λ3, 0.95} (8)

add5(a0, · · · , a4) =
4
∑

i=0

ai (9)

multiply5(a0, · · · , a4) =
4
∏

i=0

ai (10)

λ3 =

(

−
1

2
+

i
√
3

2

)

(11)

Let us consider the optimum value for the DMAX problem
with Dp = 3. In order to get maximum absolute value, first,
create 5λ3, using five λ3 and add5. Then, create (5λ3)5 =
55λ3

2, using 5λ3 and multiply5. However, Re(55λ3
2) is

negative, and 55λ3
2 is not a optimum solution. Therefore,

substituting two 5 ∗ 0.95 for two 5λ3 makes the optimum
value, (5λ3)3(0.95 ∗ 5)2 = 2820.3125. Fig. 3 visualizes this
structure. We can find that the optimum value with Dp = 4 is
(5λ3)24(0.95 ∗ 5) = 2.83 ∗ 1017 in a similar way.

Fig. 3. An optimum solution of the DMAX problem (Dp = 3)

2) Results and Analysis: Table IV present the average
number of fitness evaluations and standard deviations in 100
trials. SGP could not get an optimum solution at Dp = 4. Fig.
4 visualizes Table IV and describes the relationship of tree
size versus the average number of fitness evaluations for the
three models. Table V shows the result of t-test. Because each
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+	
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The	
  op)mum	
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  :	
  depth	
  4	
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MAX	
  :	
  Results	
  and	
  discussion	
  	

•  Difference	
  between	
  POLE-­‐BP	
  and	
  POLE	
  for	
  depth	
  =	
  6,	
  7,	
  8	
  is	
  

sta)cally	
  significant	
  at	
  1%	
  significant	
  level	
  
•  MAX	
  problem	
  has	
  no	
  decep)veness	
  
– MPS	
  always	
  accelerates	
  to	
  get	
  an	
  op)mum	
  solu)on	
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  MAX	
  problem	


•  Search	
  the	
  func)on	
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  returns	
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  biggest	
  
real	
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A purpose of the MAX problem is to search a function that
returns the largest real value within the limits of a maximum
tree depth. In this problem, three symbols described below are
used.

F = {+, ∗}, T = {0.5} (6)

An optimum solution can be obtained by the following pro-
cedure. First, create the value “2” using four “0.5” symbols
and three “+” symbols. Then, multiply the created “2”s using
“*” symbols. 22Dp−3 represents the optimum value for a given
maximum depth Dp.
2) Results and Analysis: Let tree size be the number of

nodes contained in the optimum structure, which can be
represented by 2Dp − 1 in the MAX problem. Table II
presents the average number of fitness evaluations and standard
deviations in 20 trials. Fig. 2 visualizes Table II and describes
the relationship of tree size versus the average number of
fitness evaluations for the three models. Table III describes the
results of the t-test, which indicates that POLE-BP is superior
to POLE and SGP. According to Table III, the P-value for
POLE-BP and POLE is smaller than 1% in Dp = 6, 7, 8.
This means that difference between POLE-BP and POLE for
Dp = 6, 7, 8 is statically significant at 1% significant level.
From the result above, LBP works better in deeper problems
which requires larger population.

TABLE II
THE NUMBER OF FITNESS EVALUATIONS FOR THE MAX PROBLEM.
VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE

GIVEN IN PARENTHESES

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
average
stdev

380
(87)

1272
(310)

3475
(918)

10238
(1567)

POLE
average
stdev

435
(85)

1648
(263)

4900
(307)

14679
(1353)

SGP
average
stdev

1416
(249)

3208
(442)

8513
(1136)

59950
(4801)

Fig. 2. The number of evaluations required for the MAX problem

TABLE III
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE MAX PROBLEM

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
vs POLE 5.02E-2 2.0E-4 1.02E-06 underflow
POLE-BP
vs SGP 3.33E-15) underflow underflow underflow

B. Experiment 2: Deceptive MAX (DMAX) Problem

1) Problem Description: In order to investigate how LBP
works in a deceptive problem, we also applied POLE-BP
to a deceptive MAX problem (DMAX problem) [1], which
is a deceptive extension of the MAX problem. The DMAX
problem has the same objective as the MAX problem: to
find functions which return the largest real value under the
limitation of a maximum tree depth Dp.

F = {add5,multiply5} (7)
T = {λ3, 0.95} (8)

add5(a0, · · · , a4) =
4
∑

i=0

ai (9)

multiply5(a0, · · · , a4) =
4
∏

i=0

ai (10)

λ3 =

(

−
1

2
+

i
√
3

2

)

(11)

Let us consider the optimum value for the DMAX problem
with Dp = 3. In order to get maximum absolute value, first,
create 5λ3, using five λ3 and add5. Then, create (5λ3)5 =
55λ3

2, using 5λ3 and multiply5. However, Re(55λ3
2) is

negative, and 55λ3
2 is not a optimum solution. Therefore,

substituting two 5 ∗ 0.95 for two 5λ3 makes the optimum
value, (5λ3)3(0.95 ∗ 5)2 = 2820.3125. Fig. 3 visualizes this
structure. We can find that the optimum value with Dp = 4 is
(5λ3)24(0.95 ∗ 5) = 2.83 ∗ 1017 in a similar way.

Fig. 3. An optimum solution of the DMAX problem (Dp = 3)

2) Results and Analysis: Table IV present the average
number of fitness evaluations and standard deviations in 100
trials. SGP could not get an optimum solution at Dp = 4. Fig.
4 visualizes Table IV and describes the relationship of tree
size versus the average number of fitness evaluations for the
three models. Table V shows the result of t-test. Because each

A purpose of the MAX problem is to search a function that
returns the largest real value within the limits of a maximum
tree depth. In this problem, three symbols described below are
used.

F = {+, ∗}, T = {0.5} (6)

An optimum solution can be obtained by the following pro-
cedure. First, create the value “2” using four “0.5” symbols
and three “+” symbols. Then, multiply the created “2”s using
“*” symbols. 22Dp−3 represents the optimum value for a given
maximum depth Dp.
2) Results and Analysis: Let tree size be the number of

nodes contained in the optimum structure, which can be
represented by 2Dp − 1 in the MAX problem. Table II
presents the average number of fitness evaluations and standard
deviations in 20 trials. Fig. 2 visualizes Table II and describes
the relationship of tree size versus the average number of
fitness evaluations for the three models. Table III describes the
results of the t-test, which indicates that POLE-BP is superior
to POLE and SGP. According to Table III, the P-value for
POLE-BP and POLE is smaller than 1% in Dp = 6, 7, 8.
This means that difference between POLE-BP and POLE for
Dp = 6, 7, 8 is statically significant at 1% significant level.
From the result above, LBP works better in deeper problems
which requires larger population.

TABLE II
THE NUMBER OF FITNESS EVALUATIONS FOR THE MAX PROBLEM.
VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE
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Fig. 2. The number of evaluations required for the MAX problem

TABLE III
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE MAX PROBLEM

Dp = 5 Dp = 6 Dp = 7 Dp = 8

POLE-BP
vs POLE 5.02E-2 2.0E-4 1.02E-06 underflow
POLE-BP
vs SGP 3.33E-15) underflow underflow underflow

B. Experiment 2: Deceptive MAX (DMAX) Problem

1) Problem Description: In order to investigate how LBP
works in a deceptive problem, we also applied POLE-BP
to a deceptive MAX problem (DMAX problem) [1], which
is a deceptive extension of the MAX problem. The DMAX
problem has the same objective as the MAX problem: to
find functions which return the largest real value under the
limitation of a maximum tree depth Dp.

F = {add5,multiply5} (7)
T = {λ3, 0.95} (8)

add5(a0, · · · , a4) =
4
∑

i=0

ai (9)

multiply5(a0, · · · , a4) =
4
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i=0

ai (10)

λ3 =

(
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1
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√
3

2

)

(11)

Let us consider the optimum value for the DMAX problem
with Dp = 3. In order to get maximum absolute value, first,
create 5λ3, using five λ3 and add5. Then, create (5λ3)5 =
55λ3

2, using 5λ3 and multiply5. However, Re(55λ3
2) is

negative, and 55λ3
2 is not a optimum solution. Therefore,

substituting two 5 ∗ 0.95 for two 5λ3 makes the optimum
value, (5λ3)3(0.95 ∗ 5)2 = 2820.3125. Fig. 3 visualizes this
structure. We can find that the optimum value with Dp = 4 is
(5λ3)24(0.95 ∗ 5) = 2.83 ∗ 1017 in a similar way.

Fig. 3. An optimum solution of the DMAX problem (Dp = 3)

2) Results and Analysis: Table IV present the average
number of fitness evaluations and standard deviations in 100
trials. SGP could not get an optimum solution at Dp = 4. Fig.
4 visualizes Table IV and describes the relationship of tree
size versus the average number of fitness evaluations for the
three models. Table V shows the result of t-test. Because each

An	
  op)mum	
  solu)on	
  :	
  depth	
  3	
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DMAX	
  :	
  Results	
  and	
  discussion	
  	

•  No	
  difference	
  between	
  POLE-­‐BP	
  and	
  POLE	
  in	
  the	
  average	
  

number	
  of	
  evalua)ons	
  at	
  1%	
  significant	
  level	
  
–  Because	
  of	
  decep)veness,	
  MPS	
  does	
  not	
  work	
  well	
  to	
  get	
  an	
  op)mum	
  

•  In	
  small	
  popula)on	
  size,	
  POLE-­‐BP	
  tends	
  to	
  get	
  an	
  op)mal	
  
solu)on	
  more	
  than	
  POLE	
  
–  Because	
  of	
  sampling	
  bias,	
  sampling	
  does	
  not	
  work	
  well	
  in	
  small	
  

popula)on.	
  Therefore,	
  LBP	
  is	
  effec)ve	
  in	
  small	
  popula)on.	
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Royal	
  tree	
  problem	


•  Search	
  Perfect	
  Tree	
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C
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P-value between POLE-BP and POLE is bigger than 1 %, the
performance of POLE-BP may not surpass POLE.
We ran 100 different experiments where population is

M = 40, 50, 60, 70, 80, 90, 100, 160 from others in order to
investigate how LBP works in small population. Table VI
presents the number of success trials of depth 3 in 100
trials. Fig. 5 visualizes effects of BP in small population.
In M = 40, ..., 100, POLE-BP succeeded more frequently
than POLE. In the DMAX problem, LBP works well in small
population cases, but performs worse in large population cases
in contrast to other two benchmark tests (the MAX and the
royal tree problems).

TABLE IV
THE NUMBER OF FITNESS EVALUATIONS FOR THE DMAX PROBLEM.
VALUES OF THE STANDARD DEVIATION (STDEV) FOR EACH CASE ARE

GIVEN IN PARENTHESES

Dp = 3 Dp = 4

POLE-BP
average
stdev

1539
(276)

120708
(10569)

POLE
average
stdev

1517
(283)

122031
(5819)

SGP
average
stdev

34875
(4533)

-
(-)

Fig. 4. The number of evaluations required for the DMAX problem

TABLE V
t-TEST.THE VALUES REPRESENT P-VALUES FOR THE DMAX PROBLEM

Dp = 3 Dp = 4

POLE-BP
vs POLE 5.78E-1 2.75E-1
POLE-BP
vs SGP underflow -

C. Experiment 3: Royal Tree Problem
1) Problem Description: To show the effectiveness of

POLE-BP, we applied our approach to the royal tree problem
[33]. The royal tree problem is an extension of the royal road
function [34], which is designed to examine the functionality
of schema in GA, to GP. In the royal tree problem, GP gets

TABLE VI
THE NUMBER OF SUCCESS TRIALS IN 100 TRAILS (THE ROYAL TREE

PROBLEM,Dp = 3)

Population
40 50 60 70 80 90 100 160

POLE-BP 2 10 42 72 84 94 99 100
POLE 1 3 21 54 79 91 97 100
SGP 77 77 81 84 88 85 89 89

Fig. 5. The number of success trials in 100 trails (Dp = 3)

the optimum structure by combining the building blocks using
crossover operators.
In this problem, symbols described below are used.

F = {A,B,C,D,E, F} (12)
T = {x}, x = 1 (13)

An optimum solution is call as Perfect Tree, where each
trunk node has the previous alphabet of children(e.g. children
nodes of a function D are C). Each function node multiplies
fitness of children by weight and adds them. If a tree which
has children as root is perfect tree, the weight is Full Bonus.
If a child is a correct node, but it is not a perfect tree, the
weight is Partial Bonus. If a child is not correct node, the
weight is Penalty. Moreover, if sub tree whose root is itself,
fitness is multiplied by Complete Bonus. We use Full Bonus =
2, Partial Bonus = 1, Penalty = 1/3, Complete Bonus = 2. For
example, Fig. 6 visualizes an optimum solution of Dp = 4,
and its fitness is 512.

Fig. 6. An optimum solution of the Royal tree problem (Dp = 4)

The	
  op)mum	
  solu)on(Perfect	
  Tree)	
  :	
  depth	
  4	
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Royal	
  tree	
  :	
  Results	
  and	
  discussion	
  	

•  Difference	
  between	
  POLE-­‐BP	
  and	
  POLE	
  for	
  depth	
  6,	
  7	
  is	
  sta)cally	
  

significant	
  at	
  1%	
  significant	
  level.	
  
•  Royal	
  tree	
  uses	
  more	
  symbols	
  (=depth)	
  than	
  MAX	
  (3)	
  and	
  DMAX	
  (4)	
  

–  MPS	
  genera)on	
  by	
  sampling	
  is	
  difficult,	
  so	
  MPS	
  genera)on	
  by	
  LBP	
  at	
  each	
  
genera)on	
  is	
  effec)ve	
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Experiments	
  on	
  3	
  benchmarks	


MAX	
  	


DMAX	
  	


Royal	
  tree	
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Es)ma)on	
  of	
  PMBGP(Probabilis)c	
  Model	
  Building	
  GP)	
  	
  
(GP	
  version	
  EDA,	
  Bayesian	
  Network)	


K2	
  Algorithm	


1.	
  Learning	
  Graph	
  Structures:	
  Construct	
  Bayesian	
  Network	
  	


Arrows	
  represent	
  dependencies	
  

Condi)onal	
  Probabili)es	


Superior	
  Solu)ons	
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Es)ma)on	
  of	
  PMBGP	


2.	
  Parameter	
  Es)ma)on:	
  Es)mate	
  condi)onal	
  probabili)es	
  	

Prior	
  Prob	


A	
 0.2	


B	
 0.7	


C	
 0.1	


Parent	
 Child	
 Condi7onal	
  Prob	


A	
 A	
 0.1	


A	
 B	
 0.7	


A	
 C	
 0.2	


B	
 A	
 0.05	


B	
 B	
 0.15	


B	
 C	
 0.8	


C	
 A	
 0.25	


C	
 B	
 0.2	


C	
 C	
 0.55	


45	




Sampling	
  of	
  PMBGP	


Probabilis)c	
  Logic	
  Sampling	
  (PLS):	
  Sample	
  from	
  ancestors	
  	


B

B

Prior	
  Prob	


A	
 0.2	


B	
 0.7	


C	
 0.1	


Parent	
 Child	
 Condi7onal	
  Prob	


A	
 A	
 0.1	


A	
 B	
 0.7	


A	
 C	
 0.2	


B	
 A	
 0.05	


B	
 B	
 0.15	


B	
 C	
 0.8	


C	
 A	
 0.25	


C	
 B	
 0.2	


C	
 C	
 0.55	
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Get	
  MPS	
  by	
  Loopy	
  Belief	
  Propaga)on	


xmax = argmax
x

µ fs→x (x)
s∈ne(x )
∑

$

%
&
&

'

(
)
)

1.	
  Ini)alize	
  all	
  messages	
  to	
  0	


2.	
  Message	
  Passing	
  	


3.	
  Get	
  MPS	
  	


µx→ f (x) = 0
µx→ f (x) =αxf + µ fl→x (x)

l∈ne(x )\ f
∑The	
  others	


leafs	


Messages	
  from	
  variable	
  to	
  factor	


µ f→x (x) = ln f (x)leafs	


µ f→x (x) = max
x,x1,...,xM

ln f (x, x1,...xM )+ µxm→ f (xm )
m∈ne( fs )\x
∑
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%
&
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)
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  others	
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Joint	
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Graph	
  transforma)on	


x1

x2 x3

P(x1)
P(x2 | x1)

P(x3 | x2 )

P(x1, x2, x3) = P(x1)P(x2 | x1)P(x3 | x2 ) = f1(x1) f2 (x1, x2 ) f3(x2, x3)

x1

x2 x3

f1(x1) = P(x1)

f2 (x1, x2 ) = P(x2 | x1)

f3(x2, x3) = P(x3 | x2 )

	
  Bayesian	
  Network	
  :	
  Directed	
  Graph	
 	
  Factor	
  Graph	
  :	
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Abstract—Estimation of distribution algorithms (EDAs) which
deal with tree structures as GP are called as probabilistic
model building GPs (PMBGPs), and they show better search
performance than GP in many problems. A problem of prototype
tree-based method, a type of PMBGPs, is that samplings do
not always generate the most probable solution, which is the
individual with the highest probability and reflects a learned
distribution most. This problem wastes a part of learning and
increases the number of evaluations to get an optimum solution.
In order to overcome this difficulty, this paper proposes a hybrid
approach using Belief propagation (BP) in sampling process.
BP is an inference algorithm on graphical models and can
generate the most probable solution. By applying our approach
to benchmark tests, we show that the proposed method is more
effective than PLS alone.

I. INTRODUCTION

µf1→x1(x1) = f1(x1), (1)
µx1→f2(x1) = µf1→x1(x1), (2)

µf2→x2(x2) = max
x1

[
f2(x1, x2)µx1→f2(x1)

]
,

µx2→f3(x2) = µf2→x2(x2), (3)

µf3→x3(x3) = max
x2

[
f3(x2, x3)µx2→f3(x2)

]
,

(4)

max(P (x1, x2, x3)) = max
x3

[
µf3→x3

]
(5)

where αxf is a scalar chosen such that
∑

xn

µx→f (x) = 0.

µf→x(x) = ln f(x), (6)
µx→f (x) = 0, (7)

µf→x(x) = max
x1,··· ,xM

[
ln f(x, x1, · · · , xM ) +

∑

m∈ne(fs)\x

µxm→f (xm)

]
, (8)

µx→f (x) = αxf +
∑

l∈ne(x)\f

µfl→x(x), (9)

where αxf is a scalar chosen such that
∑

xn

µx→f (x) = 0.

In this paper, we introduce loopy belief propagation (LBP)
in probabilistic model building GPs (PMBGPs) in order to
generate the most probable solutions in sampling process.
We selected program optimization with linkage estimation
(POLE) [?] as a foundation of our approach, which employs
Bayesian networks for a probabilistic model and uses a special
chromosome called as the expanded parse tree (EPT) [?]. We
call our proposed method as POLE-BP.

Estimation of distribution algorithms (EDAs) are a new
paradigm in the field of evolutionary computation, and have
attracted more and more attention due to their reliability in
GA-hard deceptive problems. EDAs estimate dependencies
between loci using probabilistic models and search solution
candidates. From a viewpoint of estimation of probabilistic
distribution, GA samples solutions from unknown superior
distribution using genetic operators such as mutation and
crossover. On the other hand, EDAs repeat model learning and
sampling from the model by taking advantage of the assump-
tion that superior distribution can be well approximated by
parametric models, which is in contrast to sampling with the
genetic operators inspired by the natural evolution. EDAs with
Bayesian networks (Bayesian optimization algorithm (BOA)
[?], estimation of Bayesian networks algorithm (EBNA) [?]
and learning factorized distribution algorithm (LFDA) [?]) are
typical EDAs, because Bayesian networks are able to represent
dependencies between any loci, and they can solve many
real world problems [?] having complex dependencies among
variables.

The individual which reflects a learned probabilistic model
most is the one having the highest joint probability, which
is often referred to as the most probable solution. However,
many sampling methods in EDAs such as probabilistic logic
sampling (PLS) and Gibbs sampling do not always generate
the most probable solution at each generation. Therefore, some
hybrid approaches using belief propagation (BP) algorithms to
generate the most probable solution were proposed in GA-
type EDAs. BP is widely used for inference in graphical

x1

x2 x3

f1

f3
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not always generate the most probable solution, which is the
individual with the highest probability and reflects a learned
distribution most. This problem wastes a part of learning and
increases the number of evaluations to get an optimum solution.
In order to overcome this difficulty, this paper proposes a hybrid
approach using Belief propagation (BP) in sampling process.
BP is an inference algorithm on graphical models and can
generate the most probable solution. By applying our approach
to benchmark tests, we show that the proposed method is more
effective than PLS alone.

I. INTRODUCTION

µf1→x1(x1) = f1(x1), (1)
µx1→f2(x1) = µf1→x1(x1), (2)

µf2→x2(x2) = max
x1

[
f2(x1, x2)µx1→f2(x1)

]
,

µx2→f3(x2) = µf2→x2(x2), (3)

µf3→x3(x3) = max
x2

[
f3(x2, x3)µx2→f3(x2)

]
,

(4)

max(P (x1, x2, x3)) = max
x3

[
µf3→x3

]
(5)

where αxf is a scalar chosen such that
∑

xn

µx→f (x) = 0.

µf→x(x) = ln f(x), (6)
µx→f (x) = 0, (7)

µf→x(x) = max
x1,··· ,xM

[
ln f(x, x1, · · · , xM ) +

∑

m∈ne(fs)\x

µxm→f (xm)

]
, (8)

µx→f (x) = αxf +
∑

l∈ne(x)\f

µfl→x(x), (9)

where αxf is a scalar chosen such that
∑

xn

µx→f (x) = 0.

In this paper, we introduce loopy belief propagation (LBP)
in probabilistic model building GPs (PMBGPs) in order to
generate the most probable solutions in sampling process.
We selected program optimization with linkage estimation
(POLE) [?] as a foundation of our approach, which employs
Bayesian networks for a probabilistic model and uses a special
chromosome called as the expanded parse tree (EPT) [?]. We
call our proposed method as POLE-BP.

Estimation of distribution algorithms (EDAs) are a new
paradigm in the field of evolutionary computation, and have
attracted more and more attention due to their reliability in
GA-hard deceptive problems. EDAs estimate dependencies
between loci using probabilistic models and search solution
candidates. From a viewpoint of estimation of probabilistic
distribution, GA samples solutions from unknown superior
distribution using genetic operators such as mutation and
crossover. On the other hand, EDAs repeat model learning and
sampling from the model by taking advantage of the assump-
tion that superior distribution can be well approximated by
parametric models, which is in contrast to sampling with the
genetic operators inspired by the natural evolution. EDAs with
Bayesian networks (Bayesian optimization algorithm (BOA)
[?], estimation of Bayesian networks algorithm (EBNA) [?]
and learning factorized distribution algorithm (LFDA) [?]) are
typical EDAs, because Bayesian networks are able to represent
dependencies between any loci, and they can solve many
real world problems [?] having complex dependencies among
variables.

The individual which reflects a learned probabilistic model
most is the one having the highest joint probability, which
is often referred to as the most probable solution. However,
many sampling methods in EDAs such as probabilistic logic
sampling (PLS) and Gibbs sampling do not always generate
the most probable solution at each generation. Therefore, some
hybrid approaches using belief propagation (BP) algorithms to
generate the most probable solution were proposed in GA-
type EDAs. BP is widely used for inference in graphical
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Problems	
  of	
  Message	
  Passing	
  in	
  prac)ce	


magnifica)on	


Graphs	
  constructed	
  in	
  POLE	
  	
  
are	
  capable	
  of	
  having	
  loops	
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Contradic)on	
  of	
  Message	
  Passing	
  
on	
  graphs	
  with	
  loops	


To	
  send	
  the	
  message,	
  the	
  node	
  should	
  receive	
  the	
  other	
  messages	


1	


3	


4	


2	


Sending	
  message	
 Received	
  message	


To	
  get	
  this	


To	
  get	
  this	


To	
  get	
  this	


To	
  send	
  this	
  message,	
  	
  
the	
  message	
  should	
  have	
  been	
  sent	
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Generaliza)on	
  of	
  Message	
  Passing	


•  To	
  adapt	
  loopy	
  graphs,	
  
1.  Set	
  all	
  messages	
  with	
  proper	
  ini)al	
  values	
  
2.  Repeatedly	
  send	
  messages	
  in	
  arbitrary	
  order	
  
3.  Generally,	
  messages	
  converge	
  to	
  the	
  right	
  value	
  

•  To	
  prevent	
  underflow,	
  subs)tute	
  log	
  and	
  
summa)on	
  for	
  mul)plica)on	
  in	
  message	
  
– This	
  subs)tu)on	
  doesn’t	
  effect	
  max	
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Graph	
  Transforma)on	


	
  Bayesian	
  Network	
  :	
  Directed	
  Graph	
 	
  Factor	
  Graph	
  :	
  Undirected	
  Graph	


Factor:	
  prior	
  and	
  condi)onal	
  probability	
  	
  	
  	
  	
Directed	
  Edge:	
  condi)onal	
  probability	
  	
  	
  	
  	


Nodes	
  without	
  parents:	
  prior	
  probability	
  	
  	
  	
  	
 Undirected	
  Edge:	
  Only	
  represent	
  connec)on	
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Message	
  Passing	
  on	
  loopy	
  graphs	
  
LBP	
  :	
  Loopy	
  Belief	
  Propaga)on	


1.	
  Ini)alize	
  all	
  messages	
  to	
  0	


2.	
  Message	
  Passing	
  repeatedly	
  	


3.	
  Get	
  MPS	
  	


The	
  others	
Leafs	


Messages	
  from	
  variable	
  to	
  factor	


Leafs	
 The	
  others	


Messages	
  from	
  factor	
  to	
  variable	


Joint	
  probability	


µ f→x (x) = ln f (x)

xmax = argmax
x

µ fs→x (x)
s∈ne(x )
∑

$

%
&
&

'

(
)
)

µx→ f (x) = 0 µx→ f (x) =αxf + µ fl→x (x)
l∈ne(x )\ f
∑

µ f→x (x) = max
x,x1,...,xM

ln f (x, x1,...xM )+ µxm→ f (xm )
m∈ne( fs )\x
∑

$

%
&
&

'

(
)
)
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The	
  weak	
  point	
  of	
  prototype	
  tree	
  based	
  
PMBGP	


1.  The	
  solu)on	
  which	
  has	
  the	
  highest	
  joint	
  probability	
  (MPS:	
  Most	
  
Probable	
  Solu)on)	
  reflects	
  the	
  constructed	
  Bayesian	
  Network,	
  
which	
  is	
  usually	
  used	
  as	
  probabilis)c	
  model.	
  

2.  However,	
  tradi)onal	
  sampling	
  does	
  not	
  always	
  generate	
  MPS	
  	
  
3.  This	
  problem	
  wastes	
  a	
  part	
  of	
  learning	
  and	
  increases	
  the	
  

number	
  of	
  evalua)ons	
  to	
  get	
  an	
  op)mum	
  solu)on.	


The	
  same	
  problem	
  is	
  pointed	
  out	
  in	
  GA-­‐type	
  EDAs,	
  
	
  but	
  sampling	
  using	
  Loopy	
  Belief	
  Propaga)on	
  	
  

is	
  known	
  as	
  a	
  way	
  to	
  overcome	
  it	
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